Two Neutrons at the Same Time

Lead author Artemis Spyrou with the Modular Neutron Array (MoNA), which detected and measured the neutrons in the experiment.

And now may I present you with antoher press release, but one that is yet again fine to distribute unedited as I am the one who wrote it in teh first place. By the way, did you catch the Office Space reference in the title?

Nuclear physicists recently witnessed an atomic nucleus do something that nobody had ever seen one do before – two neutrons at the same time.

Emitting them, that is.

The experiment revealed a brand new form of nuclear decay, the process by which unstable atoms release energy and transform into more stable forms. But instead of emitting known patterns of radiation, the nucleus ejected two correlated neutrons simultaneously – a dineutron. Though physicists had long theorized about the existence of this form of decay, this was the first experiment to see the dineutron event in action.

“We have for the first time unambiguously observed dineutron decay and clearly identified it in beryllium-16,” said Artemis Spyrou, professor of nuclear physics.

The newly discovered dineutron decay mode joins the 15 other known forms of atomic decay, including double proton emission, double beta decay and double positron emission. The results hold promise to strengthen scientists’ understanding of the strong force that holds nuclei together and the processes taking place within neutron stars.

The researchers caught the act red-handed. Beryllium-16 is an unbound, unstable isotope with 4 protons and 12 neutrons that decays in less than a trillionth of a second. To produce the extremely short-lived nucleus, the physicists smashed a beam of boron-17 into a solid target, occasionally knocking out a proton and forming the desired beryllium-16.

Graphic illustration of dineutron decay and the other decay modes that the nucleus could have potentially gone through.

The neutrons emitted by the newly produced but instantly decaying nucleus flew straight into the Modular Neutron Array (MoNA) neutron detector, while the remaining beryllium-14 nucleus was deflected by a powerful magnet into a separate device to be measured. The resulting events clearly showed two neutrons travelling closely together – a dineutron – through the MoNA detector at the same time that a beryllium-14 nucleus was detected, giving direct evidence of the dineutron decay. In addition, the neutrons were sure to have been emitted simultaneously because it requires more energy to emit one at a time, making the dineutron decay the preferred mode.

*Like that annoying drunk girl, it’s really tough to kick her out of the party. But if you send the frat guy she’s been making out with all night packing along with her, it becomes much easier.

Or, as Spyrou explained it, “You have to use energy to break off just one neutron, but the two neutrons just go.”

The results have been published in a recent issue of Physical Review Letters (PRL 108 (2012) 102501) as an editors suggestion and have been highlighted as a focus article by Physics, an online journal by the American Physical Society spotlighting exceptional research (http://physics.aps.org/articles/v5/30).

For further reading, see the Focus article printed in the APS Physics journal at this website or the feature story run by Europe’s Institute of Physics website here.

*Not really in the original release, but I wish I could have gotten away with it!

About these ads

About bigkingken

A science writer dedicated to proving that the Big Ten - or the Committee on Institutional Cooperation, if you will - is more than athletics.
This entry was posted in Michigan State and tagged , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s